
How to cook an Agile Web Based Model Driven

Environment in a night

Carlo Bernaschina

Cáceres, June 7, 2018

Model Driven Development

MDD is the branch of software engineering that advocates the use of models.

(Abstract representations of a System)

Model Transformations (M2M)

Model Transformations are a Key ingredient of MDD.

Iteratively adding details.

Model Transformations (M2T)

Model Transformations are a Key ingredient of MDD.

Generating final artifacts.

How to build an MDD Environment

 Eclipse Modeling Framework (EMF)

 ALMOsT.js

 Custom tools

Eclipse Modeling Framework (EMF)

 Defining a Meta-Model
• Ecore www.eclipse.org/ecoretools/
• MOF
• …

 Graphical Representation
• GMF

www.eclipse.org/modeling/gmp/
• EuGENia

www.eclipse.org/epsilon/doc/eugen
ia/

• …

 Textual Representation
• Xtext

https://www.eclipse.org/Xtext/
• …

 Model to Model
• ATL www.eclipse.org/atl/
• QVT wiki.eclipse.org/M2M/QVTO
• ETL www.eclipse.org/epsilon/
• …

 Model to Text
• Acceleo www.eclipse.org/acceleo/
• …

https://www.eclipse.org/modeling/emf/

http://www.eclipse.org/epsilon/doc/eugenia/
http://www.eclipse.org/epsilon/doc/eugenia/
http://www.eclipse.org/acceleo/
http://www.eclipse.org/acceleo/

Model Transformation Languages

We have a plethora of transformation languages, that can be

organized as follow:

 Declarative
EMF Henshin

 Imperative
Kermeta

 Hybrid
ATLAS Transformation Language (ATL)

They all require specific tools and environment, making them not easy to

integratee inside other tools.

So…

Easy, Right?

Custom Tool

D.W.T.F.Y.W.

Do With The Framework You Want

Pros and Cons

EMF

Pros

 Standard Languages

 Documentation

 Interoperability

Cons

 Steep learning curve

 (personal) Is it actually future
proof?

 (personal) Eclipse bounded

Custom Tools

Pros

 Tailored to your needs

 Full control

 Reuse preexisting knowledge

Cons

 High development costs (time)

Agile Software Development

Agile Software Development is an incremental and iterative approach based on

principles that aim at increasing productivity and adherence to requirement,

while keeping the process as lightweight as possible.

 Extreme Programming
Test Driven Development

 SCRUM

Agile Model Driven Development (AMDD)

The majority of the attempts to use apply Agile techniques to Model

Driven Development focus on the mapping of the development

process.

 Incremental & Iterative Development
support for incomplete models

 Test Driven Development

 SCRUM
mapping MDD development steps to the SCRUM workflow

What about tools/meta-models?

We need to integrate tool into the loop.

Tools need to co-evolve iteratively with the models in order to

support new functionalities/requirements that were not foreseen

during the initial phases.

Requirements

1. No installation

2. No new language

3. Fast start-up

4. Parallel development

5. Customized output

6. Customized generation

We present

ALMOsT.js
AgiLe MOdel Transformations

https://www.npmjs.com/package/almost

What you need to know is ALMOsT JavaScript

Architecture

The Model

The model must be an object with two array properties

(elements, relations)

The Rule (Model)

Rules are pairs of plain functions.

(condition & action)

The Rule (element)

Rules are pairs of plain functions.

(Condition & Action)

The Rule (relation)

Rules are pairs of plain functions.

(Condition & Action)

The Reducer

All the results of the rules are merged following a custom reduction policies.

ALMOsT.js has two predefined reduction policies:

 Model2Model

The results of the rules must be partial models

 Model2Text

The results of the rules must objects in which every attribute describes a file

or a folder in the generated filesystem.

Reducer (Model2Model)

In a Model2Model transformation each rule must export a partial model.

They will be reduced my concatenating elements and relations.

Reducer (Model2Text)

In a Model2Text transformation each rule must export an object where each

attribute is a descriptor for a file or a folder.

Mandatory properties are type and name. If an isFolder property is found it will

be considered as a folder and the children properties will be concatenated.

Usage (put everything together)

What About Meta-Models?

No explicit definition of Meta-Model is present in ALMOsT.js

There is though a suggested element and relations structure.

What About Meta-Models? (2)

Using the ALMOsT-Extend plugin it is possible to extend the input model
with helper functions that can be used to simplify the graph navigation:

 Id  Element Lookup

toElement(), toId()

 Type Checking
isType(), isOtherType()

 Relation Navigation
getChildren(), getParent()

 Custom Walks
getDescendants(), getAncestors()

Running Example (Model2Model)

Running Example (Model2Text)

No installation

It must be possible for the team to use the framework

instantly, with no installation.

ALMOsT.js is developed using pure JavaScript.

It can be integrated inside any web based platform, both on client-

side and on server-side (Node.js)

No new language

It must be possible to start using the environment

without learning languages that are not normally

employed for application development.

ALMOsT.js is developed using pure JavaScript.

Both data structures and rules are plain JavaScript objects and

code.

Fast start-up

It must be possible to create a minimum viable model

editor and model transformation in a very short time.

ALMOsT.js is plug-in based, you use/learn just what you need.

 Graphical editors
ALMOsT-Joint

 Advanced graph analysis
ALMOsT-Extend

 Rule tracing
ALMOsT-Trace

Parallel Development

It must be possible to work in a team on different

aspects of the same sprint.

ALMOsT.js model format can be easily customized to introduce new

concepts without the introducing breaking changes.

ALMOsT.js rules can be easily modularized.

Customized output / Customized generation

It must easy to turn the generated code into a

complete version by adding non functional aspects

like graphics and sample data collections.

ALMOsT.js generation rules can be easily extended using state of

the art template engines like PUG and EJS.

User Case

IFMLEdit.org

Model Editing

IFML Model Editing

Model to Model transformations

PCN Model Generation and Analysis

Model to Text transformation

Code Generation & Simulation

\

Let’s get to work?
https://github.com/B3rn475/ICWE2018-Tutorial

